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Time-Series Data Mining

PHILIPPE ESLING and CARLOS AGON, Institut de Recherche et Coordination
Acoustique/Musique (IRCAM)

In almost every scientific field, measurements are performed over time. These observations lead to a col-
lection of organized data called time series. The purpose of time-series data mining is to try to extract all
meaningful knowledge from the shape of data. Even if humans have a natural capacity to perform these
tasks, it remains a complex problem for computers. In this article we intend to provide a survey of the tech-
niques applied for time-series data mining. The first part is devoted to an overview of the tasks that have
captured most of the interest of researchers. Considering that in most cases, time-series task relies on the
same components for implementation, we divide the literature depending on these common aspects, namely
representation techniques, distance measures, and indexing methods. The study of the relevant literature
has been categorized for each individual aspects. Four types of robustness could then be formalized and any
kind of distance could then be classified. Finally, the study submits various research trends and avenues that
can be explored in the near future. We hope that this article can provide a broad and deep understanding of
the time-series data mining research field.
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1. INTRODUCTION

A time series represents a collection of values obtained from sequential measurements
over time. Time-series data mining stems from the desire to reify our natural ability
to visualize the shape of data. Humans rely on complex schemes in order to perform
such tasks. We can actually avoid focusing on small fluctuations in order to derive a
notion of shape and identify almost instantly similarities between patterns on various
time scales. Major time-series-related tasks include query by content [Faloutsos et al.
1994], anomaly detection [Weiss 2004], motif discovery [Lin et al. 2004], prediction
[Weigend and Gershenfeld 1994], clustering [Lin and Keogh 2005], classification
[Bakshi and Stephanopoulos 1994], and segmentation [Keogh et al. 2003a]. Despite
the vast body of work devoted to this topic in the early years, Antunes and Oliveira
[2001] noted that “the research has not been driven so much by actual problems but by
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an interest in proposing new approaches”. However, with the ever-growing maturity
of time-series data mining techniques, this statement seems to have become obsolete.
Nowadays, time-series analysis covers a wide range of real-life problems in various
fields of research. Some examples include economic forecasting [Song and Li 2008], in-
trusion detection [Zhong et al. 2007], gene expression analysis [Lin et al. 2008], medical
surveillance [Burkom et al. 2007], and hydrology [Ouyang et al. 2010].

Time-series data mining unveils numerous facets of complexity. The most prominent
problems arise from the high dimensionality of time-series data and the difficulty of
defining a form of similarity measure based on human perception. With the rapid
growth of digital sources of information, time-series mining algorithms will have to
match increasingly massive datasets. These constraints show us that three major
issues are involved.

—Data representation. How can the fundamental shape characteristics of a time-series
be represented? What invariance properties should the representation satisfy? A
representation technique should derive the notion of shape by reducing the dimen-
sionality of data while retaining its essential characteristics.

—Similarity measurement. How can any pair of time-series be distinguished or
matched? How can an intuitive distance between two series be formalized? This
measure should establish a notion of similarity based on perceptual criteria, thus
allowing the recognition of perceptually similar objects even though they are not
mathematically identical.

—Indexing method. How should a massive set of time-series be organized to enable
fast querying? In other words, what indexing mechanism should be applied? The
indexing technique should provide minimal space consumption and computational
complexity.

These implementation components represent the core aspects of time-series data
mining systems. However, these are not exhaustive as many tasks will require the use
of more specific modules. Moreover, some of these are useless for some specific tasks.
Forecasting (refer to Section 3.5) is the most blatant example of a topic that requires
more advanced analysis processes as it is more closely related to statistical analysis. It
may require the use of a time-series representation and a notion of similarity (mostly
used to measure prediction accuracy) whereas model selection and statistical learning
are also at the core of forecasting systems. The components that are common to most
time-series mining tasks have therefore been analyzed and other components found in
related tasks have been briefly discussed.

The following part of this article has been organized as follows: first introducing
the fundamental concepts of time-series data mining (Section 2); then presenting an
overview of the tasks to which most of the research in this field has been devoted
(Section 3); then reviewing the literature based on the three core components for im-
plementation (Section 4) and finally reviewing the research trends for future work in
this field (Section 5).

2. DEFINITIONS

The purpose of this section is to provide a definition for the terms used throughout this
article.

Definition 2.1. A time-series T is an ordered sequence of n real-valued variables

T = (t1, . . . , tn) , ti ∈ R.

A time series is often the result of the observation of an underlying process in the
course of which values are collected from measurements made at uniformly spaced
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time instants and according to a given sampling rate. A time series can thus be defined
as a set of contiguous time instants. The series can be univariate as in Definition 2.1
or multivariate when several series simultaneously span multiple dimensions within
the same time range.

Time series can cover the full set of data provided by the observation of a process
and may be of considerable length. In the case of streaming, they are semi-infinite as
time instants continuously feed the series. It thus becomes interesting to consider only
the subsequences of a series.

Definition 2.2. Given a time series T = (t1, . . . , tn) of length n, a subsequence S of T
is a series of length m ≤ n consisting of contiguous time instants from T

S = (tk, tk+1, . . . , tk+m−1)

with 1 ≤ k ≤ n−m+1. We denote the set of all subsequences of length m from T as Sm
T .

For easier storage, massive time-series sets are usually organized in a database.

Definition 2.3. A time-series database DB is an unordered set of time series.

As one of the major issues with time-series data mining is the high dimensionality
of data, the database usually contains only simplified representations of the series.

Definition 2.4. Given a time series T = (t1, . . . , tn) of length n, a representation of T
is a model T̄ of reduced dimensionality d̄ (d̄ � n) such that T̄ closely approximates T .

Nearly every task of time-series data mining relies on a notion of similarity between
series. After defining the general principle of similarity measures between time series,
we will see (Section 4.3) how these can be specified.

Definition 2.5. The similarity measureD(T ,U ) between time series T and U is a
function taking two time series as inputs and returning the distance d between these
series.

This distance has to be nonnegative, that is, D(T ,U ) ≥ 0. If this measure satisfies
the additional symmetry property D(T ,U ) = D(U, T ) and subadditivity D(T , V ) ≤
D(T ,U ) + D(U, V ) (also known as the triangle inequality), the distance is said to be a
metric. As will be seen later (Section 4.4), on the basis of the triangle inequality, metrics
are very efficient measures for indexing. We may also extend this notion of distance to
the subsequences.

Definition 2.6. The subsequence similarity measure Dsubseq(T , S) is defined as

Dsubseq (T , S) = min
(
D

(
T , S′))

for S′ ∈ S|T |
S . It represents the distance between T and its best matching location in S.

3. TASKS IN TIME-SERIES DATA MINING

This section provides an overview of the tasks that have attracted wide research in-
terest in time-series data mining. These tasks are usually just defined as theoretical
objectives though concrete applications may call for simultaneous use of multiple tasks.

3.1. Query by Content

Query by content is the most active area of research in time-series analysis. It is based
on retrieving a set of solutions that are most similar to a query provided by the user.
Figure 1 depicts a typical query by content task, represented on a two-dimensional
search space. We can define it formally as follows.
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Fig. 1. Diagram of a typical query by content task represented in a two-dimensional search space. Each
point in this space represents a series whose coordinates are associated with its features. (a) When a query is
entered into the system, it is first transformed into the same representation as that used for other datapoints.
Two types of query can then be computed. (b) A ε−range query will return the set of series that are within
distance ε of the query. (c) A K−Nearest Neighbors query will return the K points closest to the query.

Definition 3.1 (Query by Content). Given a query time series Q = (q1, . . . , qn) and a
similarity measure D(Q, T ), find the ordered list L = {T1, . . . , Tn} of time series in the
database DB, such that ∀Tk, Tj ∈ L, k > j ⇔ D(Q, Tk) > D(Q, Tj).

The content of the result set depends on the type of query performed over the
database. The previous definition is in fact a generalized formalization of a query
by content. It is possible to specify a threshold ε and retrieve all series whose simi-
larity with the query D(Q, T ) is less than ε. This type of query is called an ε-range
query.

Definition 3.2 (ε-Range Query). Given a query time-series Q = (q1, . . . , qn), a time-
series database DB, a similarity measure D(Q, T ) and a threshold ε, find the set of
series S = {Ti | Ti ∈ DB} that are within distance ε from Q. More precisely, find
S = {Ti ∈ DB | D(Q, Ti) ≤ ε}.

Selecting this threshold is obviously highly data dependent. Users usually want
to retrieve a set of solutions by constraining the number of series it should contain,
without knowing how far they will be from the query. It is thus possible to query the K
most similar series in the database (K-Nearest Neighbors query).

Definition 3.3 (K-Nearest Neighbors). Given a query time series Q = (q1, . . . , qn), a
time-series database DB, a similarity measure D(Q, T ), and an integer K, find the set
of K series that are the most similar to Q. More precisely, find S = {Ti | Ti ∈ DB} such
that |S| = K and ∀Tj /∈ S, D(Q, Ti) ≤ D(Q, Tj).

Such queries can be called on complete time series; however, the user may also be
interested in finding every subsequence of the series matching the query, thus making a
distinction between whole series matching and subsequence matching. This distinction
between these types of queries is thus expressed in terms of ε-range query.

Definition 3.4 (Whole Series Matching). Given a query Q, a similarity measure
D(Q, T ), and a time-series database DB, find all series Ti ∈ DB such that D(Q, Ti) ≤ ε.

Definition 3.5 (Subsequence Matching). Given a query Q, a similarity measure
D(Q, T ), and a database DB, find all subsequences T

′
i of series Ti ∈ DB such that

Dsubseq(Q, T ′
i ) ≤ ε.

In former times, time-series mining was almost exclusively devoted to this task
(refer to seminal work by Agrawal et al. [1993]). In this article, the representation
was based on a set of coefficients obtained from a Discrete Fourier Transform (DFT) to
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reduce the dimensionality of data. These coefficients were then indexed with an R*-tree
[Beckmann et al. 1990]. False hits were removed in a postprocessing step, applying the
Euclidean distance to complete time series. This paper laid the foundations of a refer-
ence framework that many subsequent works just enlarged by using properties of the
DFT [Rafiei and Mendelzon 1998] or similar decompositions such as Discrete Wavelet
Transform (DWT) [Chan and Fu 1999], that has been shown to have similar efficiency
depending on the dataset at hand [Popivanov and Miller 2002]. The Discrete Cosine
Transform (DCT) has also been suggested [Korn et al. 1997] but it appeared later that
it did not have any advantage over other decompositions [Keogh et al. 2004]. Several
numeric transformations—such as random projections [Indyk et al. 2000], Piecewise
Linear Approximation (PLA) [Shatkay and Zdonik 1996], Piecewise Approximate Ag-
gregation (PAA) [Keogh et al. 2001b; Yi and Faloutsos 2000], and Adaptive Piecewise
Constant Approximation (APCA) [Keogh et al. 2001a]—have been used as represen-
tations. Symbolic representations have also been widely used. A shape alphabet with
fixed resolution was originally proposed in Agrawal et al. [1995]. Other symbolic repre-
sentations have been proposed, such as the bit-level approximation [Ratanamahatana
et al. 2005] or the Symbolic Aggregate approXimation (SAX) [Lin et al. 2003]; the latter
one has been shown to outperform most of the other representations [Stiefmeier et al.
2007]. We will find shortly a detailed overview of representations (Section 4.2), distance
measures (Section 4.3), and indexing techniques (Section 4.4).

Other important extensions to query by content include the handling of scaling
and gaps [Vlachos et al. 2002], noise [Vlachos et al. 2004], query constraints [Goldin
and Kanellakis 1995], and time warping, either by allowing false dismissals [Yi et al.
1998] or working without constraints [Sakurai et al. 2005]. Lower bounding dis-
tances without false dismissals for DTW were proposed in Kim et al. [2001] and
Keogh and Ratanamahatana [2005] which allows exact indexing. The recent trend of
query by content systems seems to be focused on streams. Given the continuously grow-
ing bandwidth, most of next-generation analysis will most likely have to be performed
over stream data. The dynamic nature of streaming time series precludes using the
methods proposed for the static case. In a recent study, Kontaki et al. [2009] introduced
the most important issues concerning similarity search in static and streaming time-
series databases. In Kontaki et al. [2007], the use of an incremental computation of DFT
allows to adapt to the stream update frequency. However, maintaining the indexing tree
for the whole streaming series seems to be uselessly costly. Assent et al. [2009] proposed
a filter-and-refine DTW algorithm called Anticipatory DTW, which allows faster rejec-
tion of false candidates. Lian et al. [2010] proposed a Weighted Locality-Sensitive Hash-
ing (WLSH) technique applying to approximate queries and working by incremental
updating adaptive to the characteristics of stream data. Lian and Chen [2007] proposed
three approaches, polynomial, DFT, and probabilistic, to predict future unknown val-
ues and answer queries based on the predicated data. This approach is a combination
of prediction (refer to Section 3.5) and streaming query by content; it is representative
of an effort to obtain a convergence of approaches that seem to be heterogeneous.

3.2. Clustering

Clustering is the process of finding natural groups, called clusters, in a dataset. The
objective is to find the most homogeneous clusters that are as distinct as possible
from other clusters. More formally, the grouping should maximize intercluster vari-
ance while minimizing intracluster variance. The algorithm should thus automatically
locate which groups are intrinsically present in the data. Figure 2 depicts some possible
outputs of a clustering algorithm. It can be seen in this figure that the main difficulty
concerning any clustering problem (even out of the scope of time-series mining) usually
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Fig. 2. Two possible outputs from the same clustering system obtained by changing the required number of
clusters with (a) N = 3 and (b) N = 8. As we can see, the clustering task is a nontrivial problem that highly
depends on the way parameters are initialized and the level of detail targeted. This parameter selection
issue is common to every clustering task, even out of the scope of time-series mining.

lies in defining the correct number of clusters. The time-series clustering task can be
divided into two subtasks.

3.2.1. Whole Series Clustering. Clustering can be applied to each complete time series
in a set. The goal is thus to regroup entire time series into clusters so that the time
series are as similar to each other as possible within each cluster.

Definition 3.6. Given a time-series database DB and a similarity measure D(Q, T ),
find the set of clusters C = {ci} where ci = {Tk | Tk ∈ DB} that maximizes interclus-
ter distance and minimizes intracluster variance. More formally ∀i1, i2, j such that
Ti1 , Ti2 ∈ ci and Tj ∈ c j D(Ti1, Tj) 	 D(Ti1 , Ti2 ).

There have been numerous approaches for whole series clustering. Typically, after
defining an adequate distance function, it is possible to adapt any algorithm pro-
vided by the generic clustering topic. Clustering is traditionnally performed by us-
ing Self-Organizing Maps (SOM) [Chappelier and Grumbach 1996], Hidden Markov
Models (HMM) [Smyth 1997], or Support Vector Machines (SVM) [Yoon et al. 2005].
Gaffney and Smyth [1999] proposed a variation of the Expectation Maximization (EM)
algorithm. However, this model-based approach has usually some scalability prob-
lems and implicitly presupposes the existence of an underlying model which is not
straightforward for every dataset. Using Markov Chain Monte Carlo (MCMC) methods,
Fröhwirth-Schnatter and Kaufmann [2008] make an estimation about the appropriate
grouping of time series simultaneously along with the group-specific model parameters.
A good survey of generic clustering algorithms from a data mining perspective is given
in Berkhin [2006]. This review focuses on methods based on classical techniques that
can further be applied to time series. A classification of clustering methods for various
static data is proposed in Han and Kamber [2006] following five categories: partition-
ing, hierarchical, density based, grid based, and model based. For the specificities of
time-series data, three of these five categories (partitioning, hierarchical, and model
based) have been applied [Liao 2005]. Clustering of time series is especially useful for
data streams; it has been implemented by using clipped data representations [Bagnall
and Janacek 2005], Auto-Regressive (AR) models [Corduas and Piccolo 2008], k−means
[Vlachos et al. 2003], and—with greater efficiency—k-center clustering [Cormode et al.
2007]. Interested readers may refer to Liao [2005] who provides a thorough survey of
time-series clustering issues by discussing the advantages and limitations of existing
works as well as avenues for research and applications.

ACM Computing Surveys, Vol. 45, No. 1, Article 12, Publication date: November 2012.



Time-Series Data Mining 12:7

Fig. 3. The three main steps of a classification task. (a) A training set consisting of two prelabeled classes C1
and C2 is entered into the system. The algorithm will first try to learn what are the characteristic features
distinguishing one class from another; they are represented here by the class boundaries. (b) An unlabeled
dataset is entered into the system that will then try to automatically deduce to which class each datapoint
belongs. (c) Each point in the set entered has been assigned to a class. The system can then optionally adapt
the class boundaries.

3.2.2. Subsequence Clustering. In this approach, the clusters are created by extracting
subsequences from a single or multiple longer time series.

Definition 3.7. Given a time series T = (t1, . . . , tn) and a similarity measure D(Q, C),
find the set of clusters C = {ci} where ci = {T ′

j | T
′
j ∈ Sn

T } is a set of subsequences that
maximizes intercluster distance and intracluster cohesion.

In Hebrail and Hugueney [2000], the series are sliced into nonoverlapping windows.
Their width is chosen by investigating the periodical structure of the time series by
means of a DFT analysis. This approach is limited by the fact that, when no strong
periodical structure is present in the series, nonoverlapping slicing may miss impor-
tant structures. A straightforward way to extend this approach can therefore be to
extract shorter overlapping subsequences and then cluster the resulting set. However,
this overlapping approach has been shown to produce meaningless results [Keogh
et al. 2003b]. Despite these deceptive results, the authors pointed out that a mean-
ingful subsequence clustering system could be constructed on top of a motif mining
[Patel et al. 2002] algorithm (refer to Section 3.7). Denton [2005] was first to suggest
an approach to overcome this inconsistency by not forcing the algorithm to use all
subsequences in the clustering process. In the context of intrusion detection, Zhong
et al. [2007] studied multiple centroid-based unsupervised clustering algorithms, and
proposed a self-labeling heuristic to detect any attack within network traffic data. Clus-
tering is also one of the major challenges in bioinformatics, especially in DNA analysis.
Kerr et al. [2008] surveyed state-of-the-art applications of gene expression clustering
and provided a framework for the evaluation of results.

3.3. Classification

The classification task seeks to assign labels to each series of a set. The main difference
when compared to the clustering task is that classes are known in advance and the
algorithm is trained on an example dataset. The goal is first to learn what are the
distinctive features distinguishing classes from each other. Then, when an unlabeled
dataset is entered into the system, it can automatically determine to which class each
series belongs. Figure 3 depicts the main steps of a classification task.

Definition 3.8. Given an unlabeled time series T , assign it to one class ci from a set
C = {ci} of predefined classes.
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There are two types of classification. The first one is the time-series classification
similar to whole series clustering. Given sets of time series with a label for each set,
the task consists in training a classifier and labeling new time series. An early approach
to time-series classification was presented in Bakshi and Stephanopoulos [1994].
However, it is based on simple trends whose results are therefore hard to interpret. A
piecewise representation was later proposed in Keogh and Pazzani [1998]; it is robust
to noise and weighting can be applied in a relevance feedback framework. The same
representation was used in Geurts [2001]; it is apparently not too robust to outliers.
To overcome the obstacle of high dimensionality, Jeng and Huang [2008] used singular
value decomposition to select essential frequencies. However, it implies higher compu-
tational costs. In a recent study, Rodriguez and Kuncheva [2007] compared three types
of classifiers: nearest neighbor, support vector machines, and decision forests. All three
methods seem to be valid, though highly depending on the dataset at hand. 1-NN classi-
fication algorithm with DTW seems to be the most widely used classifier; it was shown
highly accurate [Xi et al. 2006], though computing speed is significantly affected by
repeated DTW computations. To overcome this limitation Srisai and Ratanamahatana
[2009] proposed a template construction algorithm based on the Accurate Shape Av-
eraging (ASA) technique. Each training class is represented by only one sequence so
that any incoming series is compared only with one averaged template per class. Sev-
eral other techniques have been introduced, such as ARMA models [Deng et al. 1997]
or HMM [Zhong and Ghosh 2002]. In the context of clinical studies, Lin et al. [2008]
enhanced HMM approaches by using discriminative HMMs in order to maximize in-
terclass differences. Using the probabilistic transitions between fewer states results in
the patients being aligned to the model and can account for varying rates of progress.
This approach has been applied in Lowitz et al. [2009], in order to detect postmyocar-
dial infarct patients. Several machine learning techniques have also been introduced
such as neural networks [Nanopoulos et al. 2001] or Bayesian classification [Povinelli
et al. 2004]. However, many of these proposals have been shown to be overpowered
by a simple 1NN-DTW classifier [Xi et al. 2006]. A double-loop EM algorithm with a
mixture of experts network structure has been introduced in Subasi [2007] for the de-
tection of epileptic seizure based on the EEG signals displayed by normal and epileptic
patients. A well-known problem in classification tasks is the overtraining, that is, when
too many training data lead to an overspecified and inefficient model. Ratanamahatana
and Wanichsan [2008] suggested a stopping criterion to improve the data selection dur-
ing a self-training phase. Zhang et al. [2009] proposed a time-series reduction, which
extracts patterns that can be used as inputs to classical machine learning algorithms.
Many interesting applications to this problem have been investigated such as brain-
computer interface based on EEG signals; they have been reviewed in Lotte et al.
[2007].

3.4. Segmentation

The segmentation (or summarization) task aims at creating an accurate approximation
of time series, by reducing its dimensionality while retaining its essential features.
Figure 4 shows the output of a segmentation system. Section 4.2 will show that most
time-series representations try to solve this problem implicitly.

Definition 3.9. Given a time series T = (t1, . . . , tn), construct a model T̄ of reduced
dimensionality d̄ (d̄ � n) such that T̄ closely approximates T . More formally |R(T̄ ) −
T | < εr, R(T̄ ) being the reconstruction function and εr an error threshold.

The objective of this task is thus to minimize the reconstruction error between a
reduced representation and the original time series. The main approach that has been
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Fig. 4. Example of application of a segmentation system. From (a) usually noisy time series containing a
very large number of datapoints, the goal is to find (b) the closest approximation of the input time series
with the maximal dimensionality reduction factor without losing any of its essential features.

undertaken over the years seems to be Piecewise Linear Approximation (PLA) [Shatkay
and Zdonik 1996]. The main idea behind PLA is to split the series into most representa-
tive segments, and then fit a polynomial model for each segment. A good review on the
most common segmentation methods in the context of PLA representation can be found
in Keogh et al. [2003a]. Three basic approaches are distinguished. In sliding windows,
a segment is grown until it exceeds some error threshold [Shatkay and Zdonik 1996].
This approach has shown poor performance with many real-life datasets [Keogh et al.
2003a]. The top-down approach consists in recursively partitioning a time series until
some stopping criterion is met [Li et al. 1998]. This approach has time complexity O(n2)
[Park et al. 1999] and is qualitatively outperformed by bottom-up. In this approach,
starting from the finest approximation, segments are iteratively merged [Keogh and
Pazzani 1998]. Himberg et al. [2001a] present fast greedy algorithms to improve pre-
vious approaches and a statistical method for choosing the number of segments is
described in Vasko and Toivonen [2002].

Several other methods have been introduced to handle this task. Palpanas et al.
[2008] introduced a representation of time series that implicitly handles the segmenta-
tion of time series. They proposed user-specified amnesic functions reducing the confi-
dence to older data in order to make room for newer data. In the context of segmenting
hydrological time series, Kehagias [2004] proposed a maximum likelihood method us-
ing an HMM algorithm. However, this method offers no guarantee to yield the globally
optimal segmentation without long execution times. For dynamic summary generation,
Ogras and Ferhatosmanoglu [2006] proposed online transform-based summarization
techniques over data streams that can be updated continuously. The segmentation of
time series can also be seen as a constrained clustering problem. Abonyi et al. [2003]
proposed to group time points by their similarity, provided that all points in a cluster
come from contiguous time instants. Therefore, each cluster represents the segments
in time whose homogeneity is evaluated with a local PCA model.

3.5. Prediction

Time series are usually very long and considered smooth, that is, subsequent values
are within predictable ranges of one another [Shasha and Zhu 2004]. The task of
prediction is aimed at explicitly modeling such variable dependencies to forecast the
next few values of a series. Figure 5 depicts various forecasting scenarios.

Definition 3.10. Given a time series T = (t1, . . . tn), predict the k next values
(tn+1, . . . , tn+k) that are most likely to occur.

Prediction is a major area in several fields of research. Concerning time series, it is
one of the most extensively applied tasks. Literature about this is so abundant that
dozens of reviews can focus on only a specific field of application or family of learning
methods. Even if it can use time-series representations and a notion of similarity to

ACM Computing Surveys, Vol. 45, No. 1, Article 12, Publication date: November 2012.



12:10 P. Esling and C. Agon

Fig. 5. A typical example of the time-series prediction task. (a) The input time series may exhibit a periodical
and thus predictable structure. (b) The goal is to forecast a maximum number of upcoming datapoints within
a prediction window. (c) The task becomes really hard when it comes to having recursive prediction, that is,
the long-term prediction of a time series implies reusing the earlier forecast values as inputs in order to go
on predicting.

evaluate accuracy, it also relies on several statistical components that are out of the
scope of this article, for example, model selection and statistical learning. This task
will be mentioned because of its importance but the interested reader willing to have
further information may consult several references on forecasting [Brockwell and Davis
2002, 2009; Harris and Sollis 2003; Tsay 2005]. Several methods have been applied
to this task. A natural option could be AR models [Box et al. 1976]. These models
have been applied for a long time to prediction tasks involving signal denoising or
dynamic systems modeling. It is, however, possible to use more complex approaches
such as neural networks [Koskela 2003] or cluster function approximation [Sfetsos and
Siriopoulos 2004] to solve this problem. A polynomial architecture has been developed
to improve a multilayer neural network in Yadav et al. [2007] by reducing higher-
order terms to a simple product of linear functions. Other learning algorithms, such as
SOM, provided efficient supervised architectures. A survey of applications of SOM to
time-series prediction is given in Barreto [2007]. Recent improvements for time-series
forecasting have been proposed; Pesaran et al. [2006] proposed a Bayesian prediction for
time series subject to discrete breaks, handling the size and duration of possible breaks
by means of a hierarchical HMM. A dynamic Genetic Programming (GP) model tailored
for forecasting streams was proposed in Wagner et al. [2007] by adapting incrementally
based on retained knowledge. The prediction task seems one of the most commonly
applied in real-life applications, considering that market behavior forecasting relies
on a wealth of financial data. Bai and Ng [2008] proposed to refine the method of
factor forecasting by introducing “targeted predictors” selected by using a hysteresis
(hard and soft thresholding) mechanism. The prediction task has also a wide scope of
applications ranging from tourism demand forecasting [Song and Li 2008] to medical
surveillance [Burkom et al. 2007]. In this article, the authors compared the predictive
accuracy of three methods, namely, nonadaptive regression, adaptive regression, and
the Holt-Winters method; the latter appeared to be the best method. In a recent study,
Ahmed et al. [2009] carried out a large-scale comparison for the major machine learning
models applied to time-series forecasting, following which the best two methods turned
out to be multilayer perceptron and Gaussian process regression. However, learning
a model for long-term prediction seems to be more complicated, as it can use its own
outputs as future inputs (recursive prediction). Herrera et al. [2007] proposed the use
of least squares SVM to solve this problem. Cao and Tay [2009] further applied saliency
analysis to SVM in order to remove irrelevant features based on the sensitivity of the
network output to the derivative of the feature input. Sorjamaa et al. [2007] proposed
to combine direct prediction and an input selection in order to cope with long-term
prediction of time series.
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Fig. 6. An idealized example of the anomaly detection task. A long time series which exhibits some kind of
periodical structure can be modeled thanks to a reduced pattern of “standard” behavior. The goal is thus to
find subsequences that do not follow the model and may therefore be considered as anomalies.

3.6. Anomaly Detection

The detection of anomalies seeks to find abnormal subsequences in a series. Figure 6
depicts an example of anomaly detection. It has numerous applications ranging from
biosurveillance [Chuah and Fu 2007] to intrusion detection [Zhong et al. 2007].

Definition 3.11. Given a time series T = (t1, . . . , tn) and a model of its normal behav-
ior, find all subsequences T ′ ∈ Sn

T that contain anomalies, that is, do not fit the model.

A good discussion on the difficulties of mining rare events is given in Weiss [2004].
The usual approach to detect anomalies is to first create a model of a series’ normal be-
havior and characterize subsequences that stray too far from the model as anomalies.
This approach can be linked to the prediction task. Indeed, if we can forecast the next
values of a time series with a large accuracy, outliers can be detected in a straightfor-
ward manner and flagged as anomalies. This approach was undertaken first in Ypma
and Duin [1997] using a SOM model to represent the expected behavior. A framework
for novelty detection is defined in Ma and Perkins [2003] and implemented based on
Support Vector Regression (SVR). Machine learning techniques were also introduced
to dynamically adapt their modelization of normal behavior. Ahmed et al. [2007] inves-
tigated the use of block-based one-class neighbor machine and recursive kernel-based
algorithms and showed their applicability to anomaly detection. Chen and Zhan [2008]
proposed two algorithms to find anomalies in the Haar wavelet coefficients of the time
series. A state-based approach is taken in Salvador et al. [2004] using time point clus-
tering so that clusters represent the normal behavior of a series. Another definition of
anomalies, the time-series discords, are defined as subsequences that are maximally
different from all the remaining subsequences [Keogh et al. 2007]. This definition is
able to capture the idea of most unusual subsequence within a time series and its
unique parameter is the required length of the subsequences. Thanks to this definition
Yankov et al. [2008] proposed an exact algorithm that requires only two linear scans,
thus allowing for the use of massive datasets. However, as with several proposals,
the number of anomalous subsequences must be specified prior to the search. Several
real-life applications have also been outlined in recent research. Anomaly detection is
applied in Gupta et al. [2007] to detect fatigue damage in polycrystalline alloys, thus
preventing problems in mechanical structures. An anomaly detection scheme for time
series is used in Chuah and Fu [2007] to determine whether streams coming from
sensors contain any abnormal heartbeats. A recent overview and classification of the
research on anomaly detection is presented in Chandola et al. [2009], which provides
a discussion on the computational complexity of each technique.

3.7. Motif Discovery

Motif discovery consists in finding every subsequence (named motif ) that appears re-
currently in a longer time series. This idea was transferred from gene analysis in
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Fig. 7. The task of motif discovery consists in finding every subsequence that appears recurrently in a longer
time series. These subsequences are named motifs. This task exhibits a high combinatorial complexity as
several motifs can exist within a single series, motifs can be of various lengths, and even overlap.

bioinformatics. Figure 7 depicts a typical example of motif discovery. Motifs were de-
fined originally in Patel et al. [2002] as typical nonoverlapping subsequences. More
formally we have the following.

Definition 3.12. Given a time series T = (t1, . . . , tn), find all subsequences T
′ ∈ Sn

T
that occur repeatedly in the original time series.

A great interest for this research topic has been triggered by the observation that
subsequence clustering produces meaningless results [Keogh et al. 2003b]. The au-
thors pointed out that motif discovery could be used as a subroutine to find meaningful
clusters. In order to find motifs more efficiently, Chiu et al. [2003] proposed to use the
random projection algorithm [Buhler and Tompa 2002] which was successfully used for
DNA sequences. However, because of its probabilistic nature, it is not guaranteed to
find the exact set of motifs. Ferreira et al. [2006] proposed an algorithm that can extract
approximate motifs in order to mine time-series data from protein folding/unfolding
simulations. In Liu et al. [2005], motif discovery is formalized as a continuous top-k mo-
tif balls problem in an m-dimensional space. However, the efficiency of this algorithm
critically depends on setting the desired length of the pattern. Tang and Liao [2008]
introduced a k-motif-based algorithm that provides an interesting mechanism to gen-
erate summaries of motifs. Yankov et al. [2007] showed that motif discovery can be
severely altered by any slight change of uniform scaling (linear stretching of the pat-
tern length) and introduced a scaling-invariant algorithm to determine the motifs.
An algorithm for exact discovery of time-series motifs has been recently proposed
[Mueen et al. 2009], which is able to process very large datasets by using early aban-
doning on a linear reordering of data. Mohammad and Nishida [2009] studied the
constrained motif discovery problem which provides a way to incorporate prior knowl-
edge into the motif discovery process. They showed that most unconstrained motif
discovery problems can be transformed into constrained ones and provided two algo-
rithms to solve such a problem. The notion of motifs can be applied to many different
tasks. The modeling of normal behavior for anomaly detection (refer to Section 3.6)
implies finding the recurrent motif of a series. For time-series classification, significant
speedups can be achieved by constructing motifs for each class [Zhang et al. 2009].

4. IMPLEMENTATION COMPONENTS

In this section, we review the implementation components common to most time-series
mining tasks. As said earlier, the three key aspects when managing time-series data
are representation methods, similarity measures, and indexing techniques. Because
of the high dimensionality of time series, it is crucial to design low-dimensional rep-
resentations that preserve the fundamental characteristics of a series. Given this rep-
resentation scheme, the distance between time series needs to be carefully defined
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in order to exhibit perceptually relevant aspects of the underlying similarity. Finally
the indexing scheme must allow to efficiently manage and query evergrowing massive
datasets.

4.1. Preprocessing

In real-life scenarios, time series usually come from live observations [Reeves et al.
2009] or sensors [Stiefmeier et al. 2007] which are particularly subject to noise and
outliers. These problems are usually handled by preprocessing the data. Noise filtering
can be handled by using traditional signal processing techniques like digital filters
or wavelet thresholding. In Himberg et al. [2001b], Independent Component Analysis
(ICA) is used to extract the main mode of the series. As will be explained in Section 4.2,
several representations implicitly handle noise as part of the transformation.

The second issue concerns the scaling differences between time series. This problem
can be overcome by a linear transformation of the amplitudes [Goldin and Kanellakis
1995]. Normalizing to a fixed range [Agrawal et al. 1995] or first subtracting the
mean (known as zero mean/unit variance [Keogh et al. 2001a]) may be applied to
both time series, however, it does not give the optimal match of two series under
linear transformations [Argyros and Ermopoulos 2003]. In Goldin et al. [2004] the
transformation is sought with optional bounds on the amount of scaling and shifting.
However, normalization should be handled with care. As noted by Vlachos et al. [2002],
normalizing an essentially flat but noisy series to unit variance will completely modify
its nature and normalizing sufficiently small subsequences can provoke all series to
look the same [Lin and Keogh 2005].

Finally, resampling (or uniform time warping [Palpanas et al. 2004a]) can be
performed in order to obtain series of the same length [Keogh and Kasetty 2003].
Downsampling the longer series has been shown to be fast and robust [Argyros and
Ermopoulos 2003].

4.2. Representation

As mentioned earlier, time series are essentially high-dimensional data. Defining al-
gorithms that work directly on the raw time series would therefore be computationally
too expensive. The main motivation of representations is thus to emphasize the essen-
tial characteristics of the data in a concise way. Additional benefits gained are efficient
storage, speedup of processing, as well as implicit noise removal. These basic properties
lead to the following requirements for any representation:

—significant reduction of the data dimensionality;
—emphasis on fundamental shape characteristics on both local and global scales;
—low computational cost for computing the representation;
—good reconstruction quality from the reduced representation;
—insensitivity to noise or implicit noise handling.

Many representation techniques have been investigated, each of them offering different
trade-offs between the properties listed before. It is, however, possible to classify these
approaches according to the kind of transformations applied. In order to perform such
classification, we follow the taxonomy of Keogh et al. [2004] by dividing representations
into three categories, namely nondata adaptive, data adaptive, and model based.

4.2.1. Nondata Adaptive. In nondata-adaptive representations, the parameters of the
transformation remain the same for every time series regardless of its nature.

The first nondata-adaptive representations were drawn from spectral decomposi-
tions. The DFT was used in the seminal work of Agrawal et al. [1993]. It projects
the time series on a sine and cosine functions basis [Faloutsos et al. 1994] in the
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real domain. The resulting representation is a set of sinusoidal coefficients. Instead
of using a fixed set of basis functions, the DWT uses scaled and shifted versions of a
mother wavelet function [Chan and Fu 1999]. This gives a multiresolution decomposi-
tion where low frequencies are measured over larger intervals thus providing better
accuracy [Popivanov and Miller 2002]. A large number of wavelet functions have been
used in the literature like Haar [Chan et al. 2003], Daubechies [Popivanov and Miller
2002], or Coiflets [Shasha and Zhu 2004]. The Discrete Cosine Transform (DCT) uses
only a cosine basis; it has also been applied to time-series mining [Korn et al. 1997].
However, it has been shown that it does not offer any advantage over previously cited
decompositions [Keogh et al. 2004]. Finally, an approximation by Chebychev polynomi-
als [Cai and Ng 2004] has also been proposed but the results obtained have later been
withdrawn due to an error in implementation.

Other approaches more specific to time series have been proposed. The Piecewise
Aggregate Approximation (PAA) introduced by Keogh et al. [2001b] (submitted
independently as Segmented Means in Yi and Faloutsos [2000]) represents a series
through the mean values of consecutive fixed-length segments. An extension of PAA
including a multiresolution property (MPAA) has been proposed in Lin and Keogh
[2005]. Aßfalg et al. [2008] suggested to extract a sequence of amplitude-levelwise local
features (ALF) to represent the characteristics of local structures. It was shown that
this proposal provided weak results in Ding et al. [2008]. Random projections have
been used for representation in Indyk et al. [2000]; in this case, each time series enters
a convolution product with k random vectors drawn from a multivariate standard.
This approach has recently been combined with spectral decompositions by Reeves
et al. [2009] with the purpose of answering statistical queries over streams.

4.2.2. Data Adaptive. This approach implies that the parameters of a transformation
are modified depending on the data available. By adding a data-sensitive selection
step, almost all nondata-adaptive methods can become data adaptive. For spectral
decompositions, it usually consists in selecting a subset of the coefficients. This ap-
proach has been applied to DFT [Vlachos et al. 2004] and DWT [Struzik et al. 1999].
A data-adaptive version of PAA has been proposed in Megalooikonomou et al. [2004],
with vector quantization being used to create a codebook of recurrent subsequences.
This idea has been adapted to allow for multiple resolution levels [Megalooikonomou
et al. 2005]. However, this approach has only been tested on smaller datasets. A sim-
ilar approach has been undertaken in Stiefmeier et al. [2007] with a codebook based
on motion vectors being created to spot gestures. However, it has been shown to be
computationally less efficient than SAX.

Several inherently data-adaptive representations have also been used. SVD has
been proposed [Korn et al. 1997] and later been enhanced for streams [Ravi Kanth
et al. 1998]. However, SVD requires computation of eigenvalues for large matrices and
is therefore far more expensive than other mentioned schemes. It has recently been
adapted to find multiscale patterns in time-series streams [Papadimitriou and Yu
2006]. PLA [Shatkay and Zdonik 1996] is a widely used approach for the segmentation
task (refer to Section 3.4). The set of polynomial coefficients can be obtained either
by interpolation [Keogh and Pazzani 1998] or regression [Huang and Yu 1999]. Many
derivatives of this technique have been introduced. The Landmarks system [Perng
et al. 2000] extends this notion to include a multiresolution property. However, the
extraction of features relies on several parameters that are highly data dependent.
APCA [Keogh et al. 2001a] uses constant approximations per segment instead of
polynomial fitting. Indexable PLA has been proposed by Chen et al. [2007a] to speed up
the indexing process. Palpanas et al. [2004b] put forward an approach based on PLA,
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to answer queries about the recent past with greater precision than older data and
called such representations amnesic. The method consisting in using a segmentation
algorithm as a representational tool has been extensively investigated. The underlying
idea is that segmenting a time series can be equated with the process of representing
the most salient features of a series while considerably reducing its dimensionality. Xie
and Yan [2007] proposed a pattern-based representation of time series. The input series
is approximated by a set of concave and convex patterns to improve the subsequence
matching process. Zhan et al. [2007] proposed a pattern representation of time series to
extract outlier values and noise. The Derivative Segment Approximation (DSA) model
[Gullo et al. 2009] is a representation based on time-series segmentation through an
estimation of derivatives to which DTW can be applied. The polynomial shape space
representation [Fuchs et al. 2010] is a subspace representation consisting of trend
aspects estimators of a time series. Bandera et al. [2009] put forward a two-level
approach to recognize gestures by describing individual trajectories with key-points,
then characterizing gestures through the global properties of the trajectories.

Instead of producing a numeric output, it is also possible to discretize the data into
symbols. This conversion into a symbolical representation also offers the advantage of
implicitly performing noise removal by complexity reduction. A relational tree repre-
sentation is used in Bakshi and Stephanopoulos [1995]. Nonterminal nodes of the tree
correspond to valleys and terminal nodes to peaks in the time series. The Symbolic
Aggregate approXimation (SAX) [Lin et al. 2003], based on the same underlying idea
as PAA, calls on equal frequency histograms on sliding windows to create a sequence
of short words. An extension of this approach, called indexable Symbolic Aggregate
approXimation (iSAX) [Shieh and Keogh 2008], has been proposed to make fast index-
ing possible by providing zero overlap at leaf nodes. The grid-based representation [An
et al. 2003] places a two-dimensional grid over the time series. The final representation
is a bit string describing which values were kept and which bins they were in. Another
possibility is to discretize the series to a binary string (a technique called clipping)
[Ratanamahatana et al. 2005]. Each bit indicates whether the series is above or below
the average. That way, the series can be very efficiently manipulated. In Bagnall et al.
[2003] this is done using the median as the clipping threshold. Clipped series offer
the advantage of allowing direct comparison with raw series, thus providing a tighter
lower bounding metric. Thanks to a variable run-length encoding, Bagnall et al. [2006]
show that it is also possible to define an approximation of the Kolmogorov complexity.
Recently, a very interesting approach has been proposed in Ye and Keogh [2009]; it is
based on primitives called shapelets, that is, subsequences which are maximally repre-
sentative of a class and thus fully discriminate classes through the use of a dictionary.
This approach can be considered as a step forward towards bridging the gap between
time series and shape analysis.

4.2.3. Model Based. The model-based approach is based on the assumption that the
time series observed has been produced by an underlying model. The goal is thus
to find parameters of such a model as a representation. Two time series are therefore
considered similar if they have been produced by the same set of parameters driving the
underlying model. Several parametric temporal models may be considered, including
statistical modeling by feature extraction [Nanopoulos et al. 2001], ARMA models
[Kalpakis et al. 2001], Markov Chains (MCs) [Sebastiani et al. 1999], or HMM [Panuccio
et al. 2002]. MCs are obviously simpler than HMM so they fit well shorter series but
their expressive power is far more limited. The time-series bitmaps introduced in
Kumar et al. [2005] can also be considered as a model-based representation for time
series, even if it mainly aims at providing a visualization of time series.
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4.3. Similarity Measure

Almost every time-series mining task requires a subtle notion of similarity between
series, based on the more intuitive notion of shape. When observing simultaneously
multiple characteristics of a series, humans can abstract from such problems as ampli-
tude, scaling, temporal warping, noise, and outliers. The Euclidean distance is obviously
unable to reach such a level of abstraction. Numerous authors have pointed out sev-
eral pitfalls when using Lp norms [Ding et al. 2008; Keogh and Kasetty 2003; Yi and
Faloutsos 2000]. However, it should be noted that, in the case of very large datasets,
Euclidean distance has been shown [Shieh and Keogh 2008] sufficient as there is a
larger probability that an almost exact match exists in the database. Otherwise, a
similarity measure should be consistent with our intuition and provide the following
properties.

(1) It should provide a recognition of perceptually similar objects, even though they
are not mathematically identical.

(2) It should be consistent with human intuition.
(3) It should emphasize the most salient features on both local and global scales.
(4) A similarity measure should be universal in the sense that it allows to identify or

distinguish arbitrary objects, that is, no restrictions on time series are assumed.
(5) It should abstract from distortions and be invariant to a set of transformations.

Many authors have reported about various transformation invariances required for
similarity. Given a time series T = {t1, . . . , tn} of n datapoints, we consider the following
transformations.

—Amplitude shifting: This is the series G = {g1, . . . , gn} obtained by a linear amplitude
shift of the original series gi = ti + k with k ∈ R a constant.

—Uniform amplification: The uniform amplification is the series G obtained by multi-
plying the amplitude of the original series gi = k.ti with k ∈ R a constant.

—Uniform time scaling: This is the series G = {g1, . . . , gm} produced by a uniform
change of the time scale of the original series gi = t
k.i� with k ∈ R a constant.

—Dynamic amplification: This is the series G obtained by multiplying the original
series by a dynamic amplification function gi = h(i).ti with h(i) a function such that
∀t ∈ [1 . . . n], h′(t) = 0 if and only if t′

i = 0.
—Dynamic time scaling: This is the series G obtained by a dynamic change of the time

scale gi = th(i) with h(i) a positive, strictly increasing function such that h : N →
[1 . . . n].

—Additive Noise: This is the series G obtained by adding a noisy component to the
original series gi = ti + εi with εi an independent identically distributed white noise.

—Outliers: This is the series G obtained by adding outliers at random positions. For-
mally, for a given set of random time positions P = {k | k ∈ [1 . . . n]}, gk = εk with εk
an independent identically distributed white noise.

The similarity measure D(T , G) should be robust to any combinations of these transfor-
mations. This property leads to our formalization of four general types of robustness.
We introduce properties expressing robustness for scaling (amplitude modifications),
warping (temporal modifications), noise, and outliers. Let S be a collection of time se-
ries, and let H be the maximal group of homeomorphisms under which S is closed. A
similarity measure D on S is called scale robust if it satisfies the following properties.

Property. For each T ∈ S and α > 0 there is a δ > 0 such that ‖ti − h(ti)‖ < δ for all
ti ∈ T implies D(T , h(T )) < α for all h ∈ H.

We call a similarity measure warp robust if the following holds.
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Property. For each T = {ti} ∈ S, T ′ = {th(i)} and α > 0 there is a δ > 0 such that
‖i − h(i)‖ < δ for all ti ∈ T implies that D(T , T ′) < α for all h ∈ H.

We call a similarity measure noise robust if it satisfies the following property.

Property. For each T ∈ S and α > 0, there is a δ > 0 such that U = T + ε with
p(ε) = N (0, δ) implies D(T ,U ) < α for all U ∈ S.

We call a measure outlier robust if the following holds.

Property. For each T ∈ S, K = {rand[1 . . . n]} and α > 0, there is a δ > 0 such that
if |K| < δ and Uk∈K = εk and Uk/∈K = Tk implies D(T ,U ) < α for all U ∈ S.

Similarity measures can be classified in four categories. Shape-based distances compare
the overall shape of the series. Edit-based distances compare two time series on the
basis of the minimum number of operations needed to transform one series into another
one. Feature-based distances extract features describing aspects of the series that are
then compared with any kind of distance function. Structure-based similarity aims at
finding higher-level structures in the series to compare them on a more global scale. We
further subdivide this category into two specific subcategories. Model-based distances
work by fitting a model to the various series and then comparing the parameters of the
underlying models. Compression-based distances analyze how well two series can be
compressed together. Similarity is reflected by higher compression ratios. As defined by
Keogh and Kasetty [2003], we refer to distance measures that compare the i–th point
of a series to the i–th point of another as lock-step and measures that allow flexible
(one-to-many / one-to-none) comparison as elastic.

4.3.1. Shape Based. The Euclidean distance and other Lp norms [Yi and Faloutsos
2000] have been the most widely used distance measures for time series [Keogh and
Kasetty 2003]. However, these have been shown to be poor similarity measurements
[Antunes and Oliveira 2001; Ding et al. 2008]. As a matter of fact, these measures do
not match any of the types of robustness. Even if the problems of scaling and noise
can be handled in a preprocessing step [Goldin and Kanellakis 1995], the warping and
outliers issues need to be addressed with more sophisticated techniques. This is where
the use of elastic measures can provide an elegant solution to both problems.

Handling the local distortions of the time axis is usually addressed using nonuni-
form time warping [Keogh and Pazzani 1998], more specifically with Dynamic Time
Warping (DTW) [Berndt and Clifford 1994]. This measure is able to match various
sections of a time series by allowing warping of the time axis. The optimal alignment
is defined by the shortest warping path in a distance matrix. A warping path W is
a set of contiguous matrix indices defining a mapping between two time series. Even
if there is an exponential number of possible warping paths, the optimal path is the
one that minimizes the global warping cost. DTW can be computed using dynamic pro-
gramming with time complexity O(n2) [Ratanamahatana and Keogh 2004a]. However,
several lower bounding measures have been introduced to speed up the computation.
Keogh and Ratanamahatana [2005] introduced the notion of upper and lower envelope
that represents the maximum allowed warping. Using this technique, the complexity
becomes O(n). It is also possible to impose a temporal constraint on the size of the DTW
warping window. It has been shown that these improve not only the speed but also
the level of accuracy as it avoids the pathological matching introduced by extended
warping [Ratanamahatana and Keogh 2004b]. The two most frequently used global
constraints are the Sakoe-Chiba Band and the Itakura Parallelogram. Salvador and
Chan [2007] introduced the FastDTW algorithm which makes a linear time computa-
tion of DTW possible by recursively projecting a warp path to a higher resolution and
then refining it. A drawback of this algorithm is that it is approximate and therefore
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offers no guarantee to finding the optimal solution. In addition to dynamic warping,
it may sometimes be useful to allow a global scaling of time series to achieve mean-
ingful results, a technique known as Uniform Scaling (US). Fu et al. [2008] proposed
the Scaled and Warped Matching (SWM) similarity measure that makes it possible to
combine the benefits of DTW with those of US.

Other shape-based measures have been introduced such as the Spatial Assembling
Distance (SpADe) [Chen et al. 2007b]; it is a pattern-based similarity measure. This
algorithm identifies matching patterns by allowing shifting and scaling on both tem-
poral and amplitude axes, thus being scale robust. The DISSIM [Frentzos et al. 2007]
distance has been introduced to handle similarity at various sampling rates. It is de-
fined as an approximation of the integral of the Euclidean distance. One of the most
interesting recent proposals is based on the concept of elastic matching of time series
[Latecki et al. 2005]. Latecki et al. [2007] presented an Optimal SuBsequence match-
ing (OSB) technique that is able to automatically determine the best subsequence and
warping factor for distance computation; it includes a penalty when skipping elements.
Optimality is achieved through a high computational cost; however, it can be reduced
by limiting the skipping range.

4.3.2. Edit Based. Edit-based methods (also known as Levenshtein distance) have orig-
inally been applied to characterize the difference between two strings. The underlying
idea is that the distance between strings may be represented by the minimum number
of operations needed to transform one string into another, with insertion, deletion,
and substitution. The presence of outliers or noisy regions can thus be compensated
by allowing gaps in matching two time series. Das et al. [1997] use the Longest Com-
mon SubSequence (LCSS) algorithm to tackle this problem. The LCSS distance uses
a threshold parameter ε for point matching and a warping threshold δ. A fast ap-
proximate algorithm to compute LCSS has been described in Bollobas et al. [1997].
Vlachos et al. [2002] normalized the LCSS similarity by the length of the time series
and allowed linear transformations. Vlachos et al. [2006] introduced lower bounding
measure and indexing techniques for LCSS. DTW requires the matched time series to
be well aligned and its efficiency deteriorates with noisy data as, when matching all
the points, it also matches the outliers distorting the true distance between sequences.
LCSS has been shown more robust than DTW under noisy conditions [Vlachos et al.
2002]; this heavily depends on the threshold setting. Morse and Patel [2007] proposed
the Fast Time-Series Evaluation (FTSE) method for computing LCSS. On the basis of
this algorithm, they proposed the Sequence Weighted Alignment model (Swale) that
extends the ε threshold-based scoring techniques to include arbitrary match rewards
and gap penalties. The Edit Distance on Real sequence (EDR) [Chen et al. 2005] is an
adaptation of the edit distance to real-valued series. Contrary to LCSS, EDR assigns
penalties depending on the length of the gaps between the series. The Edit Distance
with Real Penalty (ERP) [Chen and Ng 2004] attempts to combine the merits of DTW
and edit distance by using a constant reference point. For the same purpose, Marteau
[2008] submitted an interesting dynamic programming algorithm called Time Warp
Edit Distance (TWED). TWED is slightly different from DTW, LCSS, or ERP algo-
rithms. In particular, it highlights a parameter that controls a kind of stiffness of the
elastic measure along the time axis. Another extension to the edit distance has been
proposed in Muhammad Fuad and Marteau [2008]; it has been called the Extended Edit
Distance (EED). Following the observation that the edit distance penalizes all change
operations with the same cost, it includes an additional term reflecting whether the
operation implied characters that are more frequent, therefore closer in distance. A
different approach for constraining the edit operations has been proposed in Chhieng
and Wong [2010]; it is based on the Constraint Continuous Editing Distance (CCED)
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that adjusts the potential energy of each sequence to achieve optimal similarity. As
CCED does not satisfy the triangle inequality, a lower bounding distance is provided
for efficient indexing.

4.3.3. Feature Based. These measures rely on the computation of a feature set reflect-
ing various aspects of the series. Features can be selected by using coefficients from
DFT [Shatkay and Zdonik 1996] or DWT decompositions (refer to Section 4.2.2) In
Janacek et al. [2005], a likelihood ratio for DFT coefficients has been shown to outper-
form Euclidean distance. In Vlachos et al. [2005], a combination of periodogram and
autocorrelation functions allows to select the most important periods of a series. This
can be extended to carrying out local correlation tracking as proposed in Papadimitriou
et al. [2006].

Concerning symbolic representations, Mannila and Seppnen [2001] represent each
symbol with a random vector and a symbolic sequence by the sum of the vectors
weighted by the temporal distance of the symbols. In Flanagan [2003] weighted his-
tograms of consecutive symbols are used as features. The similarity search based on
Threshold Queries (TQuEST) [Aßfalg et al. 2006] uses a given threshold parameter τ
in order to transform a time series into a sequence of threshold-crossing time intervals.
It has, however, been shown to be highly specialized with mitigated results on classical
datasets [Ding et al. 2008]. Bartolini et al. [2005] proposed a Fourier-based approach,
called WARP and making the using of the DFT phase possible, this being more accurate
for a description of object boundaries.

An approach using ideas from shape- and feature-based representations has been
described in Megalooikonomou et al. [2005]. Typical local shapes are extracted with
vector quantization and the time series are represented by histograms counting the
occurrences of these shapes at several resolutions. Multiresolution Vector Quantized
(MVQ) approximation keeps both local and global information about the original time
series, so that defining a multiresolution and hierarchical distance function is made
possible.

4.3.4. Structure Based. Even if the previously cited approaches have been useful for
short time series or subsequences applications, they often fail to produce meaningful
results on longer series. This is mostly due to the fact that these distances are usually
defined to find local similarities between patterns. However, when handling very long
time series, it might be more profitable to find similarities on a more global scale.
Structure-based distances [Lin and Li 2009] are thus designed to identify higher-level
structures in series.

Model Based. Model-based distances offer the additional advantage that prior knowl-
edge about the generating process can be incorporated in the similarity measurement.
The similarity can be measured by modeling one time series and determining the likeli-
hood that one series was produced by the underlying model of another. Any type of para-
metric temporal model may be used. HMM with continuous output values or ARMA
models are common choices [Xiong and Yeung 2004]. However, best results are ob-
tained if the model selected is related to the type of production that generated the data
available. In Ge and Smyth [2000], HMMs are combined with a piece-wise linear rep-
resentation. In Panuccio et al. [2002] the distance between HMM is normalized to take
into account the quality of fit of the series producing the model. Bicego et al. [2003] use
the similarity-based paradigm where HMM is used to determine the similarity between
each object and a predeterminated set of other objects. For short time series, it is also
possible to use regression models as proposed by Gaffney and Smyth [1999].

Among other common choice for symbolic representations, we may cite MC [Rein-
ert et al. 2000], HMM with discrete output distributions [Law and Kwok 2000], and
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grammar-based models [Antunes and Oliveira 2001]. Alternatively to pair-wise like-
lihood, the Kullback-Leibler divergence allows to have direct comparison of models
[Sebastiani et al. 1999].

Compression Based. Keogh et al. [2004], inspired by results obtained in bioin-
formatics, defined a distance measure based on the Kolmogorov complexity called
Compression-Based Dissimilarity Measure (CDM). The underlying idea is that con-
catenating and compressing similar series should produce higher compression ratios
than when doing so with very different data. This approach appears particularly ef-
ficient for clustering; it has been applied to fetal heart rate tracings [Costa Santos
et al. 2006]. Following the same underlying ideas, Degli Esposti et al. [2009] recently
proposed a parsing-based similarity distance in order to distinguish healthy patients
from hospitalized ones on the basis of various symbolic codings of ECG signals. By
comparing the performances of several data classification methods, this distance is
shown to be a good compromise between accuracy and computational efforts. Simi-
lar approaches have been undertaken earlier in bioinformatics [Chen et al. 2000] and
several compression techniques—such as the Lempel-Ziv complexity [Otu and Say-
ood 2003]—have been successfully applied to compute similarity between biological
sequences.

4.3.5. Comparison of Distance Measures. The choice of an adequate similarity measure
highly depends on the nature of the data to analyze as well as application-specific prop-
erties that could be required. If the time series are relatively short and visual perception
is a meaningful description, shape-based methods seem to be the appropriate choice. If
the application is targeting a very specific dataset or any kind of prior knowledge about
the data is available, model-based methods may provide a more meaningful abstrac-
tion. Feature-based methods seem more appropriate when periodicities is the central
subject of interest and causality in the time series is not relevant. Finally, if the time
series are long and little knowledge about the structure is available, the compression-
based and more generally structure-based approaches have the advantage of being a
more generic and parameter-free solution for the evaluation of similarity. Even with
these general recommendations and comparisons for the selection of an appropriate
distance measure, the accuracy of the similarity chosen still has to be evaluated. Ironi-
cally, it seems almost equally complex to find a good accuracy measure to evaluate the
different similarities. However (refer to Section 4.4), a crucial result when indexing is
that any distance measure should lower bound the true distance between time series
in order to preclude false dismissals [Faloutsos et al. 1994]. Therefore the tightness
of lower bound [Keogh and Kasetty 2003] appears to be the most appropriate option
to evaluate the performance of distance measures as it is a completely hardware- and
implementation-independent measure and offers a good prediction concerning the in-
dexing performance. The accuracy of distance measures is usually evaluated within a
1-NN classifier framework. It has been shown by Ding et al. [2008] that, despite all
proposals regarding different kinds of robustness, the forty year old DTW usually per-
forms better. Table I summarizes the properties of every distance measure reviewed in
this article, based on our formalization of four types of robustness. It also determines
whether the distance is a metric and indicates the computational cost and the number
of parameters required.

4.4. Indexing

An indexing scheme allows to have an efficient organization of data for quick retrieval
in large databases. Most of the solutions presented involve a dimensionality reduction
in order to index this representation using a spatial access method. Several studies
suggest that the various representations differ but slightly in terms of indexing power
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Table I. Comparison of the Distance Measures surveyed in This Article with the Four Properties
of Robustness

Distance measure Scale Warp Noise Outliers Metric Cost Param

Shape-based
Lp norms

√
O(n) 0

Dynamic Time Warping (DTW)
√

O(n2) 1
LB Keogh (DTW)

√ √ √
O(n) 1

Spatial Assembling (SpADe)
√ √ √

O(n2) 4
Optimal Bijection (OSB)

√ √ √
O(n2) 2

DISSIM
√ √ √

O(n2) 0

Edit-based
Levenshtein

√ √
O(n2) 0

Weighted Levenshtein
√ √

O(n2) 3
Edit with Real Penalty (ERP)

√ √ √
O(n2) 2

Time Warp Edit Distance (TWED)
√ √ √

O(n2) 2
Longest Common SubSeq (LCSS)

√ √ √
O(n) 2

Sequence Weighted Align (Swale)
√ √ √

O(n) 3
Edit Distance on Real (EDR)

√ √ √ √
O(n2) 2

Extended Edit Distance (EED)
√ √ √ √

O(n2) 1
Constraint Continuous Edit (CCED)

√ √ √
O(n) 1

Feature-based
Likelihood

√ √ √
O(n) 0

Autocorrelation
√ √ √

O(nlogn) 0
Vector quantization

√ √ √ √
O(n2) 2

Threshold Queries (TQuest)
√ √ √

O(n2logn) 1
Random Vectors

√ √ √
O(n) 1

Histogram
√ √ √

O(n) 0
WARP

√ √ √ √
O(n2) 0

Structure-based
Model-based
Markov Chain (MC)

√ √
O(n) 0

Hidden Markov Models (HMM)
√ √ √ √

O(n2) 1
Auto-Regressive (ARMA)

√ √
O(n2) 2

Kullback-Leibler
√ √ √

O(n) 0
Compression-based
Compression Dissimilarity (CDM)

√ √ √
O(n) 0

Parsing-based
√ √ √

O(n) 0

Each distance measure is thus distinguished as scale (amplitude), warp (time), noise or outliers
robust. The next column shows whether the proposed distance is a metric. The cost is given as
a simplified factor of computational complexity. The last column gives the minimum number
of parameters setting required by the distance measure.

[Keogh and Kasetty 2003]. However, wider differences arise concerning the quality
of results and the speed of querying. There are two main issues when designing an
indexing scheme: completeness (no false dismissals) and soundness (no false alarms).
In an early paper, Faloutsos et al. [1994] list the properties required for indexing
schemes.

(1) It should be much faster than sequential scanning.
(2) The method should require little space overhead.
(3) The method should be able to handle queries of various lengths.
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(4) The method should allow insertions and deletions without rebuilding the index.
(5) It should be correct, that is, there should be no false dismissals.

As noted by Keogh et al. [2001b] there are two additional desirable properties.

(1) It should be possible to build the index within “reasonable time”.
(2) The index should be able to handle different distance measures.

A time series X can be considered as a point in an n-dimensional space. This imme-
diately suggests that time series could be indexed by Spatial Access Methods (SAMs).
These allow to partition space into regions along a hierarchical structure for efficient
retrieval. B-trees [Bayer and McCreight 1972], on which most hierarchical indexing
structures are based, were originally developed for one-dimensional data. They use
prefix separators, thus no overlap for unique data objects is guaranteed. Multidi-
mensional indexing structures, such as the R-tree [Beckmann et al. 1990], use data
organized in Minimum Bounding Rectangles (MBR). However, when summarizing
data in minimum bounding regions, the sequential nature of time series cannot be
captured. Their main shortcoming is that a wide MBR produces large overlap with a
majority of empty space. Queries therefore intersect with many of these MBRs.

Typical time series contain over a thousand datapoints and most SAM approaches
are known to degrade quickly at dimensionality greater than 8 to 12 [Chakrabarti and
Mehrotra 1999]. The degeneration with high dimensions caused by overlapping can
result in having to access almost the entire dataset by random I/O. Therefore, any
benefit gained when indexing is lost. As R-trees and their variants are victims of the
phenomenon known as the “dimensionality curse” [Bohm et al. 2001], a solution for
their usage is to first perform dimensionality reduction. The X-tree (extended node
tree), for example, uses a different split strategy to reduce overlap [Berchtold et al.
2002]. The A-tree (approximation tree) uses VA-file-style (vector approximation file)
quantization of the data space to store both MBR and VBR (Virtual Bounding Rect-
angle) lower and upper bounds [Sakurai et al. 2000]. The TV-tree (telescopic vector
tree) is an extension of the R-tree. It uses minimum bounding regions (spheres, rect-
angles, or diamonds, depending on the type of Lp norm used) restricted to a subset of
active dimensions. However, not all methods rely on SAM to provide efficient indexing.
Park et al. [2000] proposed the use of suffix trees [Gusfield 1997] to index time series.
The idea is that distance computation relies on comparing prefixes first, so it is pos-
sible to store every series with identical prefixes in the same nodes. The subtrees will
therefore only contain the suffixes of the series. However, this approach seems hardly
scalable for longer time series or more subtle notions of similarity. In Faloutsos et al.
[1994] the authors introduced the GEneric Multimedia INdexIng method (GEMINI)
which can apply any dimensionality reduction method to produce efficient indexing.
Yi and Faloutsos [2000] studied the problem of multimodal similarity search in which
users can choose between multiple similarity models depending on their needs. They
introduced an indexing scheme for time series where the distance function can be any
Lp norm. Only one index structure is needed for all Lp norms. To analyze the effi-
ciency of indexing schemes, Hellerstein et al. [1997] considered the general problem of
database indexing workloads (combinations of datasets and sets of potential queries).
They defined a framework to measure the efficiency of an indexing scheme based on
two characterizations: storage redundancy (how many times each item in the dataset is
stored) and access overhead (how many unnecessary blocks are retrieved for a query).
For indexing purposes, envelope-style upper and lower bounds for DTW have been pro-
posed [Keogh and Ratanamahatana 2005]; the indexing procedure of short time series
is efficient but similarity search typically entails more page reads. This framework has
been extended [Vlachos et al. 2006] in order to index multidimensional time series with
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DTW as well as LCSS. Assent et al. [2008] proposed the TS-tree, an indexing method
offering efficient similarity search on time series. It avoids overlap and provides com-
pact metadata information on the subtrees, thus reducing the search space. In Kontaki
et al. [2007], the use of an Incremental DFT Computation index (IDC-Index) has been
proposed to handle streams based on a deferred update policy and an incremental
computation of the DFT at different update speeds. However, the maintenance of the
R*-tree for the whole streaming series might cause a constantly growing overhead and
the latter could result in performance loss. It is also possible to use indexing methods
to speed up DTW calculation; however, it induces a trade-off between efficiency and
I/O cost. However, Shieh and Keogh [2008] recently showed that for datasets that are
large enough, the benefits of using DTW instead of Euclidean distance is almost null,
as the larger the dataset, the higher the probability to find an exact match for any time
series. They proposed an extension of the SAX representation, called indexable SAX
(iSAX), allowing to index time series with zero overlap at leaf nodes.

5. RESEARCH TRENDS AND ISSUES

Time-series data mining has been an evergrowing and stimulating field of study that
has continuously raised challenges and research issues over the past decade. We discuss
in the following open research issues and trends in time-series data mining for the next
decade.

Stream analysis. The last years of research in hardware and network research have
witnessed an explosion of streaming technologies with the continuous advances of
bandwidth capabilities. Streams are seen as continuously generated measurements
that have to be processed in massive and fluctuating data rates. Analyzing and mining
such data flows are computationally extreme tasks. Several papers review research
issues for data streams mining [Gaber et al. 2005] or management [Golab and Ozsu
2003]. Algorithms designed for static datasets have usually not been sufficiently opti-
mized to be capable of handling such continuous volumes of data. Many models have
already been extended to control data streams, such as clustering [Domingos and Hul-
ten 2000], classification [Hulten et al. 2001], segmentation [Keogh et al. 2003a], or
anomaly detection [Chuah and Fu 2007]. Novel techniques will be required and they
should be designed specifically to cope with the everflowing data streams.

Convergence and hybrid approaches. A lot of new tasks can be derived through a
relatively easy combination of the already existing tasks. For instance, Lian and Chen
[2007] proposed three approaches, polynomial, DFT, and probabilistic, to predict the
unknown values that have not fed into the system and answer queries based on forecast
data. This approach is a combination of prediction (refer to Section 3.5) and query by
content (refer to Section 3.1) over data streams. This work shows that future research
has to rely on the convergence of several tasks. This could potentially lead to powerful
hybrid approaches.

Embedded systems and resource-constrained environments. With the advances in
hardware miniaturization, new requirements are imposed on analysis techniques and
algorithms. Two main types of constraints should absolutely be met when hardware
is inherently limited. First, embedded systems have a very limited memory space
and cannot have permanent access to it. However, most method use disk-resident
data to analyze any incoming information. Furthermore, sensor networks (which are
frequently used in embedded systems) usually generate huge amounts of streaming
data. So there is a vital need to design space-efficient techniques, in terms of memory
consumption as well as number of accesses. An interesting solution has been recently
proposed in Ye et al. [2009]. The algorithm is termed autocannibalistic, meaning that it
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is able to dynamically delete parts of itself to make room for new data. Second, as these
resource-constrained environments are often required to be autonomous, minimizing
energy consumption is another vital requirement. Bhargava et al. [2003] have shown
that sending measurements to a central site in order to process huge amounts of data
is energy inefficient and lacks scalability.

Data mining theory and formalization. A formalization of data mining would dras-
tically enhance potential reasoning on design and development of algorithms through
the use of a solid mathematical foundation. Faloutsos and Megalooikonomou [2007]
examined the possibility of a more general theory of data mining that could be as
useful as relational algebra is for database theory. They studied the link between data
mining and Kolmogorov complexity by showing their close relatedness. They conclude
from the undecidability of the latter that data mining will never be automated, and
therefore stating that “data mining will always be an art”. However, a mathematical
formalization could lead to global improvements of both reasoning and the evaluation
of future research in this topic.

Parameter-free data mining. One of the major problems affecting time-series sys-
tems is the large numbers of parameters induced by the method. The user is usually
forced to “fine-tune” the settings in order to obtain best performances. However, this
tuning highly depends on the dataset and parameters are not likely to be explicit.
Thus, parameter-free systems are one of the key issues that have to be addressed.
Keogh et al. [2004] proposed a first step in this direction by introducing a compression-
based algorithm that does not require any parameter. As underlined by Faloutsos and
Megalooikonomou [2007], this approach could lead to elegant solutions free from the
parameter setting problem.

User interaction. Time-series data mining is starting to be highly dedicated to
application-specific systems. The ultimate goal of such methods is to mine for higher-
order knowledge and propose a set of solutions to the user. It could therefore seem
natural to include a user interaction scheme to allow for dynamic exploration and re-
finement of the solutions. An early proposal by Keogh and Pazzani [1998] allows for
relevance feedback in order to improve the querying process. From the best results of
a query, the user is able to assign positive or negative influences to the series. A new
query is then created by merging the series with respect to the user factors on which
the system iterates. Few systems have tried to follow the same direction. However, an
interactive mining environment allowing dynamic user exploration could increase the
accessibility and usability of such systems.

Exhaustive benchmarking. A wide range of systems and algorithms has been pro-
posed over the past few years. Individual proposals are usually submitted together
with specific datasets and evaluation methods that prove the superiority of the new
algorithm. As noted by Keogh and Kasetty [2002], selecting those datasets may lead
to data bias and they showed that the performance of time-series systems is highly
data dependent. The superiority of an algorithm should be tested with a whole range
of datasets provided by various fields [Ding et al. 2008]. There is still a need for a com-
mon and exhaustive benchmarking system to perform objective testing. Another highly
challenging task is to develop a procedure for real-time accuracy evaluation procedure.
This could provide a measure of the accuracy achieved, thus allowing to interact with
the system in real time to improve its performance.

Adaptive mining algorithm dynamics. Users are not always interested in the results
of a simple mining task and prefer to focus on evolution of these results in time. This
actually represents the dynamics of a time-series data mining system. This kind of
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study is of particular relevance in the context of data streams. Dong et al. [2003]
studied what are the distinctive features of analyzing streams, rather than other kinds
of data. They argued that one of the core issues is to mine changes in data streams. As
they are of constantly evolving nature, a key aspect of the analysis of such data is to
establish how an algorithm is able to adapt dynamically to such continuous changes.
Furthermore, this could lead to ranking changes on the basis of relevance measures and
contribute to the elaboration of methods to summarize and represent changes in the
system. By finding a way to measure an approximate accuracy in real time, it should
be possible to imagine more “morphable” algorithms that could adapt dynamically to
the nature of the data available on the basis of their own performances.

Link to shape analysis. Shape analysis has also been matter for discussion over the
past few years. There is an astonishing resemblance between the tasks that have been
examined; such as query by content [Berretti et al. 2000], classification [Kauppinen
et al. 1995], clustering [Liew et al. 2000], segmentation [Sebastian et al. 2003], and
even motif discovery [Xi et al. 2007]. As a matter of fact, there is a deeper connection
between these two fields as recent work shows the numerous inherent links existing be-
tween these. Barone et al. [2009] studied the problem of classifying ordered sequences
of digital images. When focusing on a given pixel, it is possible to extract the time
series representing the evolution of the information it contains. As this series is mor-
phologically related to the series of the neighboring pixels, it is possible to perform
a classification and segmentation based on this information. As presented earlier, Ye
and Keogh [2009] proposed to extract a time series from the contour of an image. They
introduced the time-series shapelets that represent the most informative part of an
image and allow to easily discriminate between image classes. We can see from these
works that both fields could benefit from each other. Even if only modest progress has
been made in that direction, a convergence of both approaches could potentially lead
to powerful systems.

6. CONCLUSION

After almost two decades of research in time-series data mining, an incredible wealth
of systems and algorithms has been proposed. The ubiquitous nature of time series led
to an extension of the scope of applications simultaneously with the development of
more mature and efficient solutions to deal with problems of increasing computational
complexity. Time-series data mining techniques are currently applied to an incredi-
ble diversity of fields ranging from economy, medical surveillance, climate forecasting
to biology, hydrology, genetics, or musical querying. Numerous facets of complexity
emerge with the analysis of time series, due to the high dimensionality of such data,
in combination with the difficulty to define an adequate similarity measure based on
human perception.

We have reviewed throughout this article the field of time-series data mining by first
giving an overview of the tasks that have occupied most of the research devoted to this
topic. We then presented the three core implementation components that constitute
most of time-series systems, namely representation techniques, similarity measures,
and indexing methods. We then proposed a categorization of each aspect in order to
classify the existing literature. By formalizing four types of robustness, we were able
to compare existing similarity measures and provided general guidelines for choosing
the best fit similarity according to the nature of analyzed data as well as the desired
types of robustness.

As for most scientific research, trying to find the solution to a problem often leads to
raising more questions than finding answers. We have thus outlined several trends
and research directions as well as open issues for the near future. The topic of
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time-series data mining still raises a set of open questions and the interest of such
research sometimes lies more in the open questions than the answers that could be
provided.
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